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Abstract

Purpose – The purpose of this paper is to review the available reduced order modeling approaches
in the literature for predicting the flow and specially temperature fields inside data centers in terms of
the involved design parameters.
Design/methodology/approach – This paper begins with a motivation for flow/thermal modeling
needs for designing an energy-efficient thermal management system in data centers. Recent studies on
air velocity and temperature field simulations in data centers through computational fluid dynamics/
heat transfer (CFD/HT) are reviewed. Meta-modeling and reduced order modeling are tools to generate
accurate and rapid surrogate models for a complex system. These tools, with a focus on low-dimensional
models of turbulent flows are reviewed. Reduced order modeling techniques based on turbulent coherent
structures identification, in particular the proper orthogonal decomposition (POD) are explained and
reviewed in more details. Then, the available approaches for rapid thermal modeling of data centers are
reviewed. Finally, recent studies on generating POD-based reduced order thermal models of data centers
are reviewed and representative results are presented and compared for a case study.
Findings – It is concluded that low-dimensional models are needed in order to predict the multi-parameter
dependent thermal behavior of data centers accurately and rapidly for design and control purposes.
POD-based techniques have shown great approximation for multi-parameter thermal modeling of data
centers. It is believed that wavelet-based techniques due to the their ability to separate between coherent
and incoherent structures – something that POD cannot do – can be considered as new promising tools for
reduced order thermal modeling of complex electronic systems such as data centers
Originality/value – The paper reviews different numerical methods and provides the reader with some
insight for reduced order thermal modeling of complex convective systems such as data centers.
Keywords Modelling, Flow, Temperature measurement, Control systems, Data handling
Paper type Research paper
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Nomenclature

a, b modal weight coefficient

cp specific heat, J/kg K

keff effective thermal conductivity, W/mK

n number of observations

m number of retained modes

P pressure, Pa

Q heat generation, W

q volumetric heat generation, W/m3

T temperature, K

u velocity, m/s

Greek symbols

� eigenvalue

r density, kg/m3

 POD mode
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�eff effective viscosity, m2 /s

Subscripts

obs observation

Superscripts

* Transpose

þ psuedo-inverse

1. Thermal management of data centers
Data centers, as shown in Figure 1, are computing infrastructure facilities that house
arrays of electronic racks containing data processing and storage equipment, whose
temperature must be maintained within allowable limits as it dissipates power. Data
centers are utilized by a broad range of end-users including internet service providers,
banks, stock exchanges, corporations, educational institutions, government installations,
and research laboratories. The multi-scale nature of data centers spanning length scales
from the chip to the facility level is shown in Figure 1. A common approach currently
used for thermal management of air cooled data centers consists of computer room air
conditioning (CRAC or AC) units that deliver cold air to the racks arranged in alternate
cold/hot aisles through perforated tiles placed over an under-floor plenum, see Figure 2.
The chip level determines the overall rate of the heat generation in the data center, while
the CRAC units at the facility level are responsible in providing the cooling solution to
maintain the chip temperatures in a safe range. Several alternate air-delivery and return
configurations are employed, particularly when a raised floor arrangement is un-
available. Some of these are seen in Figure 3 (Rambo and Joshi, 2006).

The power consumption of data center facilities can be in the range of tens of MW,
with an additional 30 percent or more needed for powering the cooling systems. Data
center energy consumption is an increasingly important concern. In 2006 data centers
in the USA consumed about 61 billion kWh, or 1.5 percent of total US electricity
consumption, for a total electricity cost of about $4.5 billion (US Environmental
Protection Agency, 2007). This estimated level of electricity consumption is estimated to

Figure 1.
Data center and its
multi-scale nature

Figure 2.
Typical air cooling
system in data centers
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be more than double that was consumed for this purpose in 2000 (US Environmental
Protection Agency, 2007), and if this trend were to continue would require the
construction of two new 500 MW power plants each year. Recent benchmarking studies
by Lawrence Berkeley National Laboratories (Greenberg et al., 2006) show an increase in
data center floor heat loads per unit area over the past few years. This is consistent with
the projected trend towards denser computing architectures, such as blade servers. The
American Society of Heating Refrigeration and Air-conditioning (ASHRAE) projects
significant increase in rack level powers (ASHRAE, 2005), as seen in Figure 4. Due to the
relatively frequent upgrades in the computing equipment, both existing and new
facilities are being subjected to these sharp increases in floor heat loading.

A significant fraction of the energy costs associated with the operation of a typical
data center can be ascribed to the cooling hardware. In the recent benchmarking study
of 11 existing facilities by the Lawrence Berkeley Laboratories (Greenberg et al., 2006)
the power consumption by the heating, ventilating and air-conditioning systems ranged
from 22 to 54 percent of the overall supply. Some estimates suggest that the annual cost
of powering and cooling servers already exceed their acquisition costs (Belady, 2007).
Energy-efficient design of the cooling systems is essential for containing operating costs,
and promoting sustainability. Through better design and preventing over-provisioning, it
should be possible to reduce energy consumption by the cooling systems. Predicting the
flow and specially temperature fields inside data centers in terms of the involved design
parameters is necessary for an energy-efficient and reliable cooling system design.

2. Computational fluid dynamics/heat transfer (CFD/HT) modeling of
data centers
Generally, the air flow inside data centers is turbulent. Also, buoyancy effects can usually
be neglected (Rambo, 2006). The Reynolds-averaged Navier-Stokes equations are
commonly used to simulate the turbulent mean flow in air-cooled data centers, by modeling
the effect of turbulence on the mean flow as a spatially dependent effective viscosity:

ru ¼ 0 ð1Þ

uru�rð�effruÞ þ 1

�
rp ¼ 0: ð2Þ

Figure 3.
Different air-delivery and

return configurations in
data centers



HFF
20,5

532

Also, the mean energy equation with effective thermal conductivity can be used to
compute the temperature field. The mean energy equation, ignoring viscous dissipation, is:

�cpurT �rðkeffrTÞ ¼ q: ð3Þ

Several researchers have simulated the air flow and temperature fields in data centers
(US Environmental Protection Agency, 2007; Greenberg et al., 2006; Patel et al., 2002;
Rambo and Joshi, 2003a, b; Shrivastava et al., 2005; Iyengar et al., 2005; Schmidt et al.,
2004; VanGilder and Schmidt, 2005; Lawrence Berkeley National Laboratory and
Rumsey Engineers, 2003; Samadiani et al., 2007). Optimization (Shah et al., 2005a, b;
Bhopte et al., 2005) and design (Schmit and Iyengar, 2005; Sharma et al., 2002; Kang
et al., 2000; Boucher et al., 2004; Rolander, 2005) incorporating different parameters
involved in these systems have also been performed. CFD/HT is usually used to predict
the air velocity and temperature fields inside the data center. Early application of
CFD/HT modeling of data centers was done by Kang et al. (2000), Patel et al. (2001),
Schmidt et al. (2001), and Rambo and Joshi (2003a). Schmidt et al. (2001) compared
experimental measurements through raised floor data center perforated tiles with two-
dimensional computational models. Their experimental validation shows fair overall

Figure 4.
ASHRAE Heat load
projections for
communication and
computing racks
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agreement with mean tile flow rates, with large individual prediction errors. VanGilder
and Schmidt (2005) parametrically studied plenum airflow for various data center
footprints, tile arrangements, tile porosity and plenum depth. Initial studies to determine
the air flow rates from the perforated tiles (Schmidt et al., 2001, 2004; VanGilder and
Schmidt, 2005; Radmehr et al., 2005; Karki et al., 2003) have modeled the plenum only
and do not simulate the effect of the air flow inside the computer room on the perforated
tile flow distribution. Samadiani et al. (2009) have shown that modeling the computer
room, CRAC units, and/or the plenum pipes could change the tile flow distribution by
up to 60 percent for the facility with 25 percent open perforated tiles and up to 135
percent for the facility with 56 percent open perforated tiles.

Numerical thermal modeling has been used for geometrical optimization of plenum
depth, facility ceiling height, and cold aisle spacing for a single set of CRAC flow rates
and uniform rack flow and power dissipation (Bhopte et al., 2005). A unit cell architecture
of a raised floor plenum data center is formulated in Rambo and Joshi (2003b) by
considering the asymptotic flow distribution in the cold aisles with increasing number of
racks in a row. The results indicated that for high flow rate racks, a ‘‘unit cell’’ containing
four rows of seven racks adequately models the hot-aisle cold-aisle configuration in a
‘‘long’’ row of racks (Rambo and Joshi, 2003b). In Patel et al. (2002), Iyengar et al. (2005),
Patel et al. (2001), and Schmidt and Cruz (2003), researchers have either modeled
individual racks as black-boxes with prescribed flow rate and temperature rise, or with
fixed flow rate and uniform heat generation. A procedure to model individual servers
within each rack was developed in Rambo and Joshi (2003a). Rambo and Joshi (2003a)
developed a multi-scale model of typical air-cooled data centers using commercial finite
volume software. In their work, each rack is modeled as a series of sub-models designed
to mimic the behavior of a server in a data center. Rambo and Joshi (2006) performed a
parametric numerical study of various air supply and return schemes, coupled with
various orientations of the racks and the CRAC units, to identify the causes of
recirculation and non-uniformity in thermal performance throughout the data center.

The multi-scale nature of data centers needs to be considered in the numerical
modeling. Also, as suggested in Samadiani et al. (2007), the future state-of-the-art of
thermal management in data centers will include a combination of cooling solutions at
different scales. This increases the need to have a multi-scale model for thermal
phenomena happening at all important scales. The multi-scale model of a representative
data center in Rambo and Joshi (2006, 2003a) consists of ~1,500,000 grid cells and needs
more than 2,400 iterations to obtain a converged solution. This model took about 8 h to
converge on a 2.8 GHz Xeon with 2 GB memory (Rambo and Joshi, 2006). Also, it should
be noted that this model is still a significant departure from reality because it does not
include finer details at the server and chip level. In light of this, a comprehensive
CFD/HT multi-scale model of operational data centers, which may contain thousands of
racks, seems infeasible due to limits on available computing. A compact or low-
dimensional model which could run much faster, while including the influence of all
important scale parameters with sufficient fidelity is essential. A comprehensive review
of literature on data center numerical modeling with a study on the necessity of compact
airflow/thermal modeling for data centers have been done in Rambo and Joshi (2007a).

3. Low-dimensional modeling approaches
Meta-modeling and reduced order modeling techniques can be used to extract the
dominant characteristics of a system, trading a degree of accuracy for much greater
computational speed. These techniques are briefly reviewed in sections 3.1 and 3.2.



HFF
20,5

534

3.1 Meta-modeling
Approaches such as linear response surfaces using design of experiments, krieging,
multivariate adaptive regression splines, and other more advanced interpolation
approaches offer approximations to generate a surrogate model of the system response
in terms of the design variables (Simpson et al., 2001). A literature review and
comparison of different meta-modeling techniques with recommendations for
computer-based engineering design has been done in Simpson et al. (2001).

Kriging, also called Gaussian process modeling, is a useful method for developing
meta-models from expensive computer or experimental simulations for product design
optimization (Sacks et al., 1989; Santner et al., 2003; Jin et al., 2001). In kriging model,
known as universal kriging, the true function of interest, Y(x), can be modeled as a
combination of a known model plus departures (Wackernagel, 2002; Joseph et al., 2008;
Simpson et al., 2001):

YðxÞ ¼ gðxÞ þ ZðxÞ ð4Þ

where gðxÞ ¼
Pr

i¼0 gihiðxÞ and Z(x) is a weak stationary stochastic process with mean
0 and covariance function �2 . The his are some known functions and gis are unknown
parameters. The covariance function is defined as covfYðxþ vÞ;YðxÞg ¼ �2 ðvÞ,
where the correlation function  ðvÞis a positive semidefinite function with  ð0Þ ¼ 1 and
 ð�hÞ ¼  ðhÞ. In this formulation, g(x) is used to capture the known trends, so that Z(x)
will be a stationary process. However, those trends are not usually known in reality. So,
the following special case, known as ordinary kriging, is commonly used:

YðxÞ ¼ g0 þ ZðxÞ: ð5Þ

The meta-model to predict the response function can be obtained as follows. If some
function values y ¼ (y1, . . . , yn)* have been evaluated at corresponding n points
{x1, . . . , xn}, the ordinary kriging predictor is given by

ŷyðxÞ ¼ ĝg0 þ  ðxÞ���1ðy� ĝg0IÞ ð6Þ

where I is a column of 1s having length n,  ðxÞ�
0
¼ ð ðx� x1Þ; . . . ;  ðx� xnÞÞ, and

� is an n � n matrix with elements  ðxi � xjÞ, and ĝg0 ¼ I���1y=I�
0
��1I. It is the

best linear unbiased predictor, which minimizes the mean squared prediction error
EfŶYðxÞ � YðxÞg2 under the model in Equation (5).

Computer models are often deterministic and there is no random error in the output.
So, kriging, providing an interpolating meta-model, is more suitable than other
common alternatives such as quadratic response surface model. It has been used for
the thermal design of wearable computers (Pacheco et al., 2003) and a variable
thickness piezoelectric bimorph actuator (Cappelleri et al., 2002). Also, Giunta (1997)
presents an investigation into the use of kriging for the multidisciplinary design
optimization of a High Speed Civil Transport aircraft. See Simpson et al. (2001) for
more examples of kriging applications.

Joseph et al. (2008) propose a modified kriging method, called blind kriging, which
has an unknown mean model identified from experimental data using a Bayesian
variable selection technique. In the blind kriging method, the functions hi’s are not
assumed to be known. Instead, they are identified through some data-analytic
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procedures. So, the blind kriging model is given by:

YðxÞ ¼ hðxÞ0gr þ ZðxÞ ð7Þ

where hðxÞ0 ¼ ð1; h1; . . . ; hrÞ; gm ¼ ðg0; g1; . . . ; grÞ0, and r are unknown. The most
important step in blind kriging is to identify the unknown functions his. They can be
chosen from a set of candidate functions, or variables, using variable selection
techniques (Joseph et al., 2008). The blind kriging has been applied for making a
surrogate model of an engine block and head joint sealing assembly, piston slap noise,
and for the flow rate through a borehole. Remarkable improvement is shown in
prediction of the corresponding response functions using blind kriging over ordinary
kriging. Also, it is concluded that a blind kriging predictor is simpler to interpret and is
more robust against the mis-specification in the correlation parameters than an
ordinary kriging predictor ( Joseph et al., 2008).

Qian et al. (2006) present a two-step approach for building low-cost surrogate
models based on data from both detailed and approximate simulations. In their
method, a Gaussian process model is first fitted using only approximate simulation
data. Then, the fitted model is adjusted with detailed simulation data. They
demonstrated the approach for the design of an electronic cooling heat exchanger
involving linear cellular materials, using a detailed but slow simulation based on
FLUENT finite volume analysis and an approximate but fast simulation using finite
difference method. The approach is particularly suitable when both a physics-based
model and an approximate model are available. Qian and Wu (2008) have extended the
work in Qian et al. (2006) to carry out location and scale adjustments more flexibly and
absorb uncertainty in the model parameters in the prediction.

3.2 Reduced order modeling through flow structure identification
The process of taking a model based either on detailed numerical simulations or full-
field experimental measurements from a large number of degrees of freedom (DOF) to
one involving significantly fewer DOF is termed model reduction; Shapiro, 2002). An
approach to develop reduced order models of turbulent flows is based on the
observation that many such flows are characterized by characteristic recurrent forms
that are collectively called coherent structures. These are energetically dominant in
many flows. So, it should be possible to build a relatively realistic, low-dimensional
model of the flow by keeping only the dominant coherent structures, and simulating
the effect of the smaller, less energetic, apparently incoherent part of the flow in some
way (Holmes et al., 1996). For this, one needs to identify the dynamically active
structures, classify their elementary interactions, and define an averaging procedure to
construct averaged quantities which would be the appropriate variables to describe
turbulence, and then find the corresponding transport equations to compute the
evolution of these new quantities (Farge et al., 1996).

3.2.1 Turbulent coherent structure identification. Flow structure identification
techniques can be used to capture the coherent structures of turbulent flows, using a
time dependent data set obtained after refining some numerical or experimental
velocity data. The approaches for physical description of the coherent structures fall
into one of the two basic categories: Eulerian or Lagrangian. The Eulerian approach to
coherent structures aims at partitioning the flow based on the instantaneous
distribution of a scalar field, such as the vorticity, kinetic energy, enstrophy, or the
strain (Haller and Yuan, 2000). For instance, Eulerian coherent vortices can be identified
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as regions with vorticity over a small threshold. On the other hand, the Lagrangian
approach to the coherent structures is concerned with patterns emerging from the
advection of passive tracers (Haller and Yuan, 2000). For instance, Lagrangian coherent
vortices have been studied in terms of absolute and relative single particle dispersion.

Eulerian coherent structures can be obtained from, for example, Q-criterion (Hunt
et al., 1988) and the swirling strength criterion (Zhou et al., 1999). These criteria are
typically formulated in terms of the invariants of the velocity gradient tensor. Other
Eulerian criteria have also been used for structure identification, and some of these have
been compared to Lagrangian criteria (Haller, 2005). Lagrangian coherent structures can
be obtained from the Okubo-Weiss criterion or finite-time Lyapunov exponents (Haller,
2002). Haller (2002) has examined the relevance of Lagrangian coherent structures for the
true flow in two-dimensional domains. Green et al. (2007) have identified Lagrangian
coherent structures for two three-dimensional flows in a plane channel, including an
isolated hairpin vortex and a fully developed turbulent flow, by calculating the direct
Lyapunov exponent (DLE). The Lagrangian method captures features of the flow that
are familiar from flow visualization experiments, and are also described by various
Eulerian criteria currently in use, but the DLE field yields greater detail than existing
Eulerian criteria. This is partially because, unlike Eulerian criteria, the DLE may be
evaluated on a finer grid than the original velocity data (Green et al., 2007).

3.2.2 Procedures for coherent structure evolution calculation. 3.2.2.1 Fourier and
wavelet-based techniques. Appropriate averaging procedures and corresponding
transport equations are needed to compute the evolution of the coherent structures in
turbulent flows. The fundamental principle in generating low-dimensional turbulence
modeling based on the coherent structures is to find a representative set of modes or
bases to project the governing equations onto, reducing the solution procedure to
finding the appropriate weight coefficients that combine the modes into the desired
approximate solution. All classical methods in turbulence rely on the Fourier
representation. While the dissipation term is optimally represented in Fourier space
because Fourier modes diagonalize the Laplacian operator (for periodic boundary
conditions), the nonlinear convective term is very complicated in Fourier space where it
becomes a convolution, i.e. all Fourier modes are involved (Farge et al., 1996). Also,
turbulent motions are nonseparable in the Fourier representation.

Wavelet transform-based techniques are alternative tools to identify the coherent/
incoherent structures, and model and compute turbulent flows. The most useful
property of the wavelet transform is its ability to detect and accurately measure the
strength of individual singularities in a signal. So, wavelet-based techniques can be
used to separately model the coherent and incoherent flow components, something that
Fourier-based models cannot do. Farge et al. (1996) present a comprehensive review on
the application of wavelet-based techniques for turbulent flows. They have shown
numerous promising case studies in solving partial differential equations in wavelet
space, including heat diffusion equation, Stokes flow in 2D, and Navier-Stokes
equations in 2D. Also, wavelet-based techniques can be used to add detail to existing
fluid flow simulations as a user-controlled post-process. Kim et al. (2008) have
presented a novel wavelet method to enable large- and small-scale detail to be modeled
separately. Instead of solving the Navier-Stokes equations over a highly refined mesh,
they used the wavelet decomposition of a low-resolution simulation to determine the
location and energy characteristics of missing high-frequency components. Then, these
missing components were synthesized using a novel incompressible turbulence
function (Kim et al., 2008).
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3.2.2.2 Proper orthogonal decomposition (POD)-based techniques. In addition to
the Fourier and wavelet-based techniques, the POD can also be used to accomplish low-
dimensional turbulence modeling (Rambo, 2006; Rolander, 2005; Holmes et al., 1996;
Rambo and Joshi, 2007b). The POD, also known as the Karhunen-Loeve decomposition,
is a statistical technique and has several properties that make it well suited for
turbulent flows. First, it has been shown experimentally that low-dimensional models
using POD can well address the role of coherent structures in turbulence generation
(Holmes et al., 1996). Second, it captures more of the dominant dynamics for a given
number of modes than any other linear decomposition (Holmes et al., 1996). Finally, the
empirical determination of the basis functions makes this method ideal for nonlinear
problems. A review of the POD method and its application for turbulence modeling has
been done in Holmes et al. (1996).

In the POD-based model reduction technique, a set of data are expanded on
empirically determined basis functions for modal decomposition. It can be used to
numerically predict the temperature field more rapidly than full-field simulations. The
temperature field is expanded into basis functions or POD modes:

T ¼ T0 þ
Xm

i¼1

bi i: ð8Þ

The general algorithm to generate a POD-based reduced order thermal modeling in a
system is illustrated in Figure 5 and is explained in the following:

(1) Observation generation. In the first step, the design variables of the system are
changed n-times and the temperature field for the entire domain is obtained by

Figure 5.
General algorithm for

POD temperature field
generation
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CFD/HT simulations, or detailed experimental measurements for each case.
These thermal fields are called observations or snapshots. An element of the
reference temperature field, T0 in Equation (8), is typically considered as the
average of the all observed data for a field point.

(2) POD modes,  i, calculation. The POD modes of a thermal system,  i, can be
calculated from observations. In Equation (8), m is the number of retained POD
modes in the decomposition which can be 1 up to n-1, where n is the number of
observations. Using the method of snapshots, each POD mode can be expressed as
a linear combination of the linearly independent observations (Holmes et al., 1996):

 i ¼
Xn

k¼1

akðTobs;k � T0Þ ð9Þ

where Tobs is a matrix of which each column, Tobs, i, includes a complete
temperature field data from an observation. The weight coefficients, ak, in
Equation (9) are obtained by solving the following n*n eigenvalue problem:

Xn

k¼1

Rði; kÞak ¼ �ai; i ¼ 1; . . . ; n ð10Þ

where R ¼ ðTobs � T0Þ� � ðTobs � T0Þ=n (Rambo, 2006; Rolander, 2005;
Holmes et al., 1996; Rambo and Joshi, 2007b). For a given set of observations, n
eigenvalues, �i , and their relevant eigenvectors are obtained from Equation (10).
Each eigenvector includes the weight coefficients, ak, of the relative POD mode
in Equation (9), so n POD modes are finally calculated. The energy captured by
each POD mode in the system is proportional to the relevant eigenvalue. The
eigenvalues are sorted in a descending order, so the first few POD modes in
Equation (8) capture larger energy compared with the later modes.

(3) POD coefficients, bi, calculation for a new test case. This key step is where the
POD can be used to create a reduced order thermal/fluid model as a function of
the system design variables. Generally, there are three methods to calculate the
POD coefficients bi for a new test case with a new set of design variables:

. Galerkin projection of the system POD modes onto the governing equations.
This results in a set of coupled non-linear ordinary differential equations in
time for transient systems, or a set of algebraic equations for steady state
systems, to be solved for the POD coefficients. This method has been used to
create reduced order models of transient temperature fields in terms of
mostly one parameter, such as Reynolds/Raleigh number (Ravindran, 2002;
Park and Cho, 1996a, b; Sirovich and Park, 1990a, b; Tarman and Sirovich,
1998; Park and Li, 2002; Ding et al., 2008). The previous investigations have
been either for prototypical flows (such as flow around a cylinder), or for
simple geometries such as channel flow where inhomogeneous boundary
conditions are easily homogenized by the inclusion of a source function in
the decomposition.

. Interpolation among modal coefficients. In steady state, the POD coefficients
at a new set of design variables can be obtained by an interpolation between
the weight coefficients at the observed variables to match a desired new
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variable value (Ding et al., 2008; Ly and Tran, 2001). In this approach, the
coefficients used to reconstruct an observed field Tobs;k are found first by
projecting each of the POD modes onto the observation in turn:

bi;obs ¼ ðTobs;k � T0Þ �  i i ¼ 1; . . . ;m: ð11Þ

This can be computed for all observations within the ensemble Tobs. The
complete coefficient matrix B 2 <m�n, in which each column is the coefficient
vector to reconstruct the corresponding observation from the ensemble Tobs,
can be more efficiently computed as:

B ¼  þ � ðTobs � T0Þ ð12Þ

where (.)þ is the Moore-Penrose pseudo-inverse giving the least squares
solution (Strang, 1988). Once bi,obs has been found for all observations, each
of which represents the solution under a specified combination of design
variables, the POD coefficients bi for a new set of design variables are
calculated through the interpolation of the coefficients bi,obs between the
corresponding observations. In other words, rather than directly
interpolating between observations, interpolation is performed in the POD
mode space using the coefficients bi,obs. For systems with one design
variable, this interpolation can be done through linear, or the slightly more
accurate piecewise cubic spline interpolation between coefficients. This
method has been applied only for a system with one parameter and simple
geometry such as cavity flow (Ding et al., 2008; Ly and Tran, 2001). However,
the approach can be extended to more complex systems with multiple design
variables using higher order multi-dimensional interpolation approaches,
such as krieging or multivariate adaptive regression splines (MARS)
(Rolander, 2005).

. Flux matching process. In the flux matching process (Rambo, 2006; Rambo
and Joshi, 2007b), the coefficients bi are obtained by applying Equation (8) to
some locally specified region, such as system boundaries to match the
known mass or heat fluxes. Although the flux matching process has been
used to develop reduced order models of the flow behavior in complex steady
state systems successfully (Rambo, 2006; Rolander, 2005; Rolander et al.,
2006; Nie and Joshi, 2008a), it has been applied only for thermal modeling of
a simple 2D geometry of a channel with two iso-heat flux blocks (Rambo and
Joshi, 2007b; Nie and Joshi, 2008a), with no consideration of complex 3D
geometry. Nie and Joshi (2008b) have presented a POD-based reduced order
modeling of steady turbulent convection in connected domains with the
application for a 3D electronic rack. They developed a POD-based modeling
for each component separately and then subsequently combined the models
together using boundary profile based flux matching. Their method is only
applicable to systems consisting of a series of nested sub-domains. Also, they
applied their methods for a case study, where the thermal parameters, which
are chip heat generation rates, existed only in one sub-domain, making the
temperature distribution in other domains almost uniform. So, matching of
the sub-domains’ temperature fields was much easier than matching the flow
and pressure fields in Nie and Joshi (2008a).
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(4) POD temperature field generation. With calculated T0,  i, and bi for a new set
of design variables, the corresponding temperature field for the test case can
be generated inside the entire domain from Equation (8) for different numbers
of used POD modes, m.

4. Low-dimensional modeling of data centers
4.1 Heuristic methods
Aside from CFD/HT, simulation methods based on some heuristic approaches have also
been explored (Moore et al., 2005a, b; Karlsson et al., 2004; Sharma et al., 2003; Tang et al.,
2006; Nathuji et al., 2008; Somani and Joshi, 2008; Qian, 2006) to predict the air
temperature at discrete points, such as server inlets/outlets, for a new heat load
distribution among the data center racks or servers. In Moore et al. (2005a, b), Karlsson
et al. (2004) and Sharma et al. (2003), machine learning techniques based on the input
from several deployed sensors are used to understand the relation between workload and
internal and ambient temperatures. These methods require a large number of data points
for interpolation and usually need a lengthy calibration for each data center of interest
before they can be used for simulation. In Qian (2006), a three-fold latent variable model,
using structural-equation method and errors-in-variables parameterization, is proposed to
generate a surrogate model for maximum rack inlet temperatures in a non-raised floor
data center in terms of nine design variables. The data center model in Somani and Joshi
(2008) has four rows with six racks for the first two rows and four for the last two. They
simulated the data center for 148 configuration runs by Flotherm. However, they just
monitored the temperature at five points for each of the 20 rack positions, resulting in 100
points totally. The surrogate model has been used for determining practical values of the
configuration variables of the data center to meet some physical and usage requirements.

In Tang et al. (2006), the rate of heat transferred by the airflow recirculation is
described by a cross-interference coefficient matrix, which shows how much of the heat
transferred by the air exiting from the outlet of each server contributes to the inlet of
every other server. Having obtained this matrix through a calibration process for a specific
data center, an abstract heat flow model is developed to predict the temperatures at the
server inlets/outlets vs server power consumption. In Nathuji et al. (2008) and Somani and
Joshi (2008), a coefficient matrix is assembled through a calibration process to provide an
estimate of the sensitivity of each server inlet temperature to every other server heat load
unit step change, for a given CRAC velocity. So an ambient intelligence-based load
management approach is designed to determine the maximum possible heat loads of each
server to meet the corresponding thermal constraint within a given air velocity.

The mentioned works above simulate the effects of the system parameters on the
temperature field in data centers based on some heuristic approaches. These methods
can predict the air temperatures only at some discrete points, such as server inlets/
outlets. Recent work on reduced order thermal modeling of data centers using POD has
extended the capabilities of the technique (Samadiani and Joshi, 2010a, b; Samadiani
et al., 2009). These extensions and representative results from Samadiani and Joshi
(2010a, b) and Samadiani et al. (2009) are briefly reviewed in the following sections.

4.2 POD and Galerkin projection for data center modeling
Samadiani and Joshi (2010a) have presented an approach to handle the challenges of multi-
parameter reduced order thermal modeling in complex multi-scale convective systems.
The approach is centered on the integration of three constructs:
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(1) POD;

(2) Galerkin projection; and

(3) energy balance/heat flux matching.

I is applicable to systems where the temperature field at selected scales or components
drives the thermal design decision. The energy equation is solved only at these
dominant components via system POD modes and Galerkin projection to obtain a more
accurate zoomed prediction at these components, instead of the entire domain. The
effects of the phenomena at other scales are modeled through simple energy balance
equations and known heat flux and temperature matching, as well as appropriate
matching conditions at the component interfaces. Unlike the previous work reviewed in
section 4.1, the POD-based modeling is a deterministic approach which can predict the
temperature at the whole data center domain in terms of multiple design variables.
Also, a novel feature, compared with the previous POD related work reviewed in
section Proper orthogonal decomposition (POD)-based techniques, is the use of POD
modes and Galerkin projection for solving the governing turbulent convection equation
in a complex multi-scale system. To the best of the authors’ knowledge, this work is
the first attempt to develop multi-parameter reduced order thermal modeling of
complex multi-scale convective systems such as data centers.

The method has been applied to a representative data center, shown in Figure 6, to obtain
a reduced order thermal modeling inside the data center with focus on the temperature filed
at the rack scale. There are five design variables for the case study of Figure 6:

(1) inlet air velocity of CRAC unit, Vin;

(2) heat load of racks A1 and B1, Q1;

Figure 6.
Case study data center

cell top view
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(3) heat load of racks A2 and B2, Q2;

(4) heat load of racks A3 and B3, Q3; and

(5) heat load of racks A4 and B4, Q4.

The presented algorithm is used to generate temperature field for several new
combinations of the design variables. It is shown that while the average temperature
difference across the racks has converged after ~10 modes, the local temperatures need
~4 additional modes to converge for the same test case. To see if the POD method can
predict the air temperatures at the rack inlets accurately for use in design decisions, the
full field CFD/HT predictions using Fluent, POD simulations, and the POD temperature
error from Samadiani and Joshi (2010a) are shown in Figure 7 for racks A1 through A4
for test case of [3 m/s, 27 kW, 7 kW, 13 kW, 24 kW] which is distinct from the original
observations. It is shown that the average error at the rack inlets for different test cases
is less than 1 �C, while the maximum local error is ~2.5 �C for some small regions
(Samadiani and Joshi, 2010a). Also, the mean error, the standard deviation, and the
Euclidean L2 norm of the POD temperature error at all 114,000 points of the rack scale
for 15 test cases have been shown in Samadiani and Joshi (2010a). The mean error
varies from 0.35 to 2.29 �C, while the average error is 1.36 �C, and the average standard
deviation 1.12 �C. Also, the error norm changes from 1.8 to 10.1 percent, while the
average is 6.2 percent (Samadiani and Joshi, 2010a). These values confirm that the
presented POD method is accurate enough at the rack scale for design purposes.

The main goal of the suggested algorithm in Samadiani and Joshi (2010a) is to
predict air temperatures at the rack inlet/outlets and inside the racks accurately and
quickly for design purposes. So, the prediction error in the entire data center domain
would be larger. It is shown that the mean error at 383,826 points of the entire data
center cell changes from 1.64 �C up to 6.31 �C for the 15 test cases. The average of the
mean errors and standard deviations are 4.08 and 3.67 �C, respectively. Also, the error
norm changes from 10.7 percent up to 35.7 percent while the average is 21.1 percent.
All these values confirm that the presented POD method is not accurate enough at the
room scale (Samadiani and Joshi, 2010a).

Regarding the computational efficiency of the technique, the POD-based algorithm
(Samadiani and Joshi, 2010a) generates the temperature field for a new test case with
different CRAC velocity and rack heat loads in 12 min, while the CFD/HT simulation
takes ~2 h for the same test case on the same computing platform (a desktop computer
with XeonTM CPU, 2.8 GHz and 2.75 GB of RAM). Also, the most time-consuming part
of the method, integrating the velocity terms in the Galerkin projection over the
domain, can be done once for all observed CRAC velocities, if the method is to be used
for many simulations. It takes ~38 min to calculate these terms. After that, the
algorithm is ready to obtain the POD temperature field for each new test case in only
4 s (Samadiani and Joshi, 2010a).

Although the presented method in Samadiani and Joshi (2010a) provides a quick
and reasonably accurate thermal modeling of air-cooled data centers for design
purposes, the approach is applicable only for systems where the temperature field at
selected scales, called dominant scales, drives the thermal design decision.
Accordingly, the generated temperature field based on this method at scales other than
dominant scales is not very accurate. Also, the method requires the fluid flow solution
at these dominant scales for integration of the energy equation via system POD modes
and Galerkin projection.
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Figure 7.
Contours of CFD/HT

temperature, POD
temperature, and relative
error (�C) at racks inlets

for test case of [3 m/s,
27 kW, 7 kW,

13 kW, 24 kW]
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4.3 POD and energy balance matching for data center modeling
Samadiani and Joshi (2010b) have presented a simpler POD-based method to generate a
reduced order thermal modeling of complex systems such as air cooled data centers. In
this method, the algebraic equations to be solved for POD coefficients in Equation (4)
are obtained simply through energy balance equations, heat flux matching (Rambo
and Joshi, 2007b), and/or surface temperature matching for all convective components
of the complex system. They applied this method to the case study shown in Figure 6
with the five design variables mentioned in section 4.2. The difference with the case
study in Samadiani and Joshi (2010a) is that each server within a rack in Samadiani
and Joshi (2010b) is modeled as a separate volumetric heat source. In Samadiani and
Joshi (2010a), each rack was modeled as a uniform volumetric heat source.

It is shown that the temperature difference across the servers has converged after
~7 modes. Also, the local temperatures need ~3 additional modes to converge for the
same test case. The full field CFD/HT predictions by Fluent, POD simulations, and the
POD temperature error from Samadiani and Joshi (2010b) are shown in Figure 8 for
racks A1 through A4 for test case of [3 m/s, 27 kW, 7 kW, 13 kW, 24 kW]. It is shown in
Samadiani and Joshi (2010b) that the average error at the rack inlets for different test
cases is less than 1.5 �C, while the maximum local error is ~2.5 �C for some small
regions. Also, the temperature prediction error at all 431,120 points representing the
entire data center cell have been studied for six test cases in Samadiani and Joshi
(2010b). The mean error for the six test cases varies from 0.63 �C or 2.4 percent to 2.13 �C
or 8.4 percent. The average of the mean absolute and relative error for all cases is 1.24 �C
and 4.9 percent, while the average standard deviation is 1.46 �C. These values confirm
that the presented POD method is accurate enough for the entire data center cell.
Regarding the computational efficiency, it takes only ~48 s to obtain the POD
temperature field by the method in Samadiani and Joshi (2010b), which is ~150 times
faster than the full field CFD/HT simulation.

Each of the two POD-based methods explained in sections 4.2 and 4.3 has its own
pros and cons. Unlike the POD-based method in Samadiani and Joshi (2010a), the
presented method in Samadiani and Joshi (2010b) does not need fluid flow modeling
and is accurate throughout the entire domain. Also, the method in Samadiani and Joshi
(2010b) is much simpler and its application is easier for reduced order thermal
modeling of operational data centers, where the observation data are gathered
experimentally and thermal sensors are deployed at the inlet/outlet of the servers.

As a deficiency, the number of available algebraic equations to be solved for the
POD coefficients in the presented method in Samadiani and Joshi (2010b) is limited by
the number of convective components and available thermal information for the
components in the system. This brings a limitation to the method whose effect on the
results for the data center cell is studied in Samadiani and Joshi (2010b). It is concluded
that the method can be used as a reliable and rapid predictor to obtain a new
temperature field throughout the system, unless the number of components or
available thermal information in the form of equations at the component boundaries is
very close to or less than the number of dominant modes. This would not typically
cause a problem in thermal model reduction of operational data centers with several
housed servers if enough numbers of servers have thermal sensors at their inlet/outlet.

On the other hand, the POD technique based on Galerkin projection in Samadiani
and Joshi (2010a) does not have any limitation regarding the number of components,
since using Galerkin projection to obtain the algebraic equations results in m distinct
algebraic equations for each component, if m POD modes are used.
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Figure 8.
Contours of CFD/HT

temperature, POD
temperature, and relative
error (�C) at racks inlets

for test case of [3 m/s,
27 kW, 7 kW,

13 kW, 24 kW]
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5. Conclusions
Studies on the airflow/thermal modeling of air-cooled data centers through CFD/HT are
reviewed and it is concluded that low-dimensional models are needed in order to
predict the multi-parameter dependent thermal behavior of data centers accurately and
rapidly for design and control purposes. Some studied meta-modeling techniques are
reviewed. Reduced order modeling approaches based on coherent structures are
explained and reviewed as available tools for low-dimensional turbulence modeling.
While most of the studies in the literature on rapid thermal modeling of data centers
are based on heuristic approaches, two recently developed POD-based reduced order
thermal modeling methods for data centers are reviewed and compared. Also, the
obtained results for a case study are presented. POD-based techniques have shown
great approximation for multi-parameter thermal modeling of data centers. It is
believed that wavelet-based techniques due to the their ability to separate between
coherent and incoherent structures – something that POD cannot do – can be
considered as new promising tools for reduced order thermal modeling of complex
electronic systems such as data centers.
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